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ABSTRACT In the environment, nutrients are rarely available in a constant supply.
Therefore, microorganisms require strategies to compete for limiting nutrients. In fresh-
water systems, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria
(AOB) compete with heterotrophic bacteria, photosynthetic microorganisms, and each
other for ammonium, which AOA and AOB utilize as their sole source of energy and
nitrogen. We investigated the competition between highly enriched cultures of AOA
(AOA-AC1) and AOB (AOB-G5-7) for ammonium. Based on the amoA gene, the newly
enriched archaeal ammonia oxidizer in AOA-AC1 was closely related to Nitrosotenuis
spp., and the bacterial ammonia oxidizer in AOB-G5-7, Nitrosomonas sp. strain Is79,
belonged to the Nitrosomonas oligotropha group (Nitrosomonas cluster 6a). Growth
experiments in batch cultures showed that AOB-G5-7 had higher growth rates than
AOA-AC1 at higher ammonium concentrations. During chemostat competition experi-
ments under ammonium-limiting conditions, AOA-AC1 dominated the cultures, while
AOB-G5-7 decreased in abundance. In batch cultures, the outcome of the competition
between AOA and AOB was determined by the initial ammonium concentrations. AOA-
AC1 was the dominant ammonia oxidizer at an initial ammonium concentration of
50 mM, and AOB-G5-7 was dominant at 500 mM. These findings indicate that during
direct competition, AOA-AC1 was able to use ammonium that was unavailable to AOB-
G5-7, while AOB-G5-7 dominated at higher ammonium concentrations. The results are
in strong accordance with environmental survey data suggesting that AOA are mainly
responsible for ammonia oxidation under more oligotrophic conditions, whereas AOB
dominate under eutrophic conditions.

IMPORTANCE Nitrification is an important process in the global nitrogen cycle. The
first step, ammonia oxidation to nitrite, can be carried out by ammonia-oxidizing
archaea (AOA) and ammonia-oxidizing bacteria (AOB). In many natural environments,
these ammonia oxidizers coexist. Therefore, it is important to understand the popu-
lation dynamics in response to increasing ammonium concentrations. Here, we study
the competition between AOA and AOB enriched from freshwater systems. The
results demonstrate that AOA are more abundant in systems with low ammonium
availabilities and that AOB are more abundant when the ammonium availability
increases. These results will help to predict potential shifts in the community compo-
sition of ammonia oxidizers in the environment due to changes in ammonium
availability.

KEYWORDS ammonia oxidation, ammonia-oxidizing archaea, ammonia-oxidizing
bacteria, competition, freshwater, nitrification

Nitrification, the oxidation of ammonia to nitrate via nitrite, is an important and cen-
tral process in the global nitrogen cycle (1). The first step of nitrification, the oxida-

tion of ammonia to nitrite, is performed by ammonia-oxidizing bacteria (AOB), which
have been grown in laboratory cultures for many decades (2–4), and ammonia-oxidizing
archaea (AOA), which were discovered in 2005 (5, 6). Both groups use chemolithotrophic
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ammonia oxidation as the sole energy-generating process and fix carbon dioxide auto-
trophically via either the Calvin cycle (AOB) or a modified version of the 3-hydroxypropi-
onate/4-hydroxybutyrate cycle (AOA) (3, 4, 6–8). Nitrite oxidation, the second step of ni-
trification, is attributed to nitrite-oxidizing bacteria (NOB), a group of bacteria belonging
to diverse phyla (9, 10). In natural systems, ammonia oxidizers and NOB often exist in
physical proximity, converting ammonia directly to nitrate (11), with ammonia oxidation
usually being the rate-limiting step. A few years ago, the ability for the complete oxida-
tion of ammonia to nitrate (Comammox) was discovered in members of the phylum
Nitrospira (12, 13).

Ammonium availability is a major factor controlling activity and community compo-
sition (6, 14–16). Ammonium concentrations in aquatic environments can range from
0.03 to 0.5mM in oligotrophic environments such as Lake Superior and the open ocean
and can be up to 100 mM in eutrophic environments such as Lake Erie and Lake Taihu
(17–20). Raw wastewater coming into wastewater treatment plants can even have 1 to
3 mM ammonium (21).

AOA and AOB differ in their affinities for ammonium. The affinity of AOA ranges
from as low as 0.003 mM NH3 (;0.1 mM NH3 plus NH4

1) for Nitrosopumilus maritimus
and Nitrosoarchaeum koreensis MY1 to up to 5 mM NH3 (;40 mM NH3 plus NH4

1) in
“Candidatus Nitrosotenuis uzonensis” (6, 22, 23). The affinity of AOB for ammonia spans
from 3 mM (;150 mM NH3 plus NH4

1) in Nitrosomonas sp. strain Is79 and Nitrosospira
briensis to more than 60 mM ammonia (;3 mM NH3 plus NH4

1) in members of the
Nitrosomonas eutropha cluster (24–26). Microorganisms with a high affinity for their
energy substrate have the ability to successfully compete with other microorganisms
for the limiting substrate (27). The competition for ammonium among AOB, hetero-
trophs, and plants has been investigated in detail (28–33). Nitrosomonas europaea is a
poor competitor for ammonium in comparison to the heterotrophic bacteria
Arthrobacter globiformis and Thiosphaera pantotropha and the AOB Nitrosomonas sp.
Is79 from the enrichment culture AOB-G5-7 (28, 32, 33).

The differences in affinity for ammonium within and between AOA and AOB indi-
cate that ammonium is an important factor in the niche differentiation of ammonia
oxidizers. However, direct competition of AOA and AOB for ammonium has not been
investigated in detail. Here, we present a study investigating the competition between
AOA and AOB enriched from freshwater systems for ammonium. Competition was
tested under ammonium-limiting conditions in continuous cultures and at elevated
ammonium concentrations in batch cultures. The experiments were conducted with
the AOB Nitrosomonas sp. Is79 in the enrichment culture AOB-G5-7 and the newly
enriched AOA culture AOA-AC1 with an AOA belonging to the Nitrosotenuis group.
AOA-AC1 was enriched from freshwater sediment and is briefly described here.

RESULTS
Enrichment of freshwater AOA and phylogenetic affiliation of the enrichment

culture. The enrichment culture AOA-AC1 was obtained from Lake Acton under autotro-
phic conditions with ammonia as the electron donor in the medium. The culture oxidized
ammonium to nitrate stoichiometrically, indicating the presence of a nitrite oxidizer.
Based on the amoA sequence, the enrichment culture belongs to Thaumarchaeota-
Nitrosopumilales group I.1.a and within the group to clade NP-h , genus Nitrosotenuis, a
genus dominated by freshwater and hot spring sequences (34–37) (Fig. 1). The amoA
gene sequence of the AOA in the enrichment culture was between 86.4% and 98.6%
identical to those of the other AOA enrichment cultures from Nitrosopumilus cluster 5
(see Table S2 in the supplemental material). The culture AOA-AC1 was 79% enriched
based on catalyzed reporter deposition fluorescence in situ hybridization (CARD FISH)
counts using AOA-specific 16S rRNA probes versus 49,6-diamidino-2-phenylindole (DAPI)
counts of all microbes in the sample (Table S3). AOB were not detected in the enrichment
culture AOA-AC1 as tested by the amplification of the DNA with AOB-specific 16S rRNA
and amoA primers (results not shown) and by FISH using AOB-specific 16S rRNA probes
(Table S3).
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Influence of ammonium concentrations on the growth of AOA-AC1 and AOB-
G5-7. The growth of the AOA enrichment culture AOA-AC1 was characterized at differ-
ent ammonium concentrations (Fig. 2). The growth rates were compared to the growth
rates of the AOB enrichment culture AOB-G5-7 (Fig. 2) (data for G5-7 were retrieved
from reference 34). The growth rate of AOA-AC1 was not affected by increasing ammo-
nium concentrations, while the growth rate of AOB-G5-7 increased with increasing am-
monium concentrations (Fig. 2).

Effect of spent medium on the growth of AOA-AC1 and AOB-G5-7. Growth
experiments with AOA-AC1 and AOB-G5-7 were conducted in the spent medium of the
same culture or the other culture (Fig. 3; Fig. S1). This experiment serves as an important
control experiment to exclude chemical inhibition of one ammonia oxidizer by the other
or by other bacteria present in the enrichment cultures. The ammonium consumption
rates of AOA-AC1 and AOB-G5-7 in standard mineral salts medium and in AOA-AC1 or
AOB-G5-7 spent medium were similar (Fig. 3). This indicates that the outcome of the
competition experiments is not impacted by the production of inhibitory substances by
members of the enrichment cultures.

Short-lived reactive oxygen species (ROS) were very likely not playing a role in the inter-
action between AOA and AOB because both cultures are enrichment cultures. Heterotrophic
bacteria in the ammonia-oxidizing enrichment cultures reduce the oxidative stress for the
ammonia oxidizers (26, 38).
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FIG 2 Influence of the ammonium concentration on the growth rates of the enrichment cultures
AOA-AC1 and AOB-G5-7 (means 6 standard deviations [SD] [n = 3]). Ammonium concentrations are
shown on a linear scale (A) and a logarithmic scale (B). All data for the culture AOB-G5-7 were
presented previously by French et al. (34) and are included here for better comparability of the data.
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FIG 1 Neighbor-joining phylogenetic tree of the AOA enrichment culture AOA-AC1 based on amoA
gene sequences (595 bp). Bootstrap values of .50 for 100 replicates are shown at the nodes.
GenBank accession numbers are in parentheses.
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Competition between AOA-AC1 and AOB-G5-7 for ammonium under ammonium-
limiting conditions in continuous cultures. AOA-AC1 and AOB-G5-7 were grown in con-
tinuous cultures with ammonium as the growth-limiting substrate (Fig. 4A and B; Fig. S2).
After inoculation, the ammonia oxidizers started to consume ammonium and to produce
nitrite and subsequently also nitrate due to the presence of nitrite oxidizers in the enrich-
ment cultures (Fig. S2). When the ammonium was consumed after 6 days in chemostat L
(inoculated with AOB-G5-7) and after 20 days in chemostat R (inoculated with AOA-AC1),
the pumps were started to add fresh mineral salts medium with ammonium. The ammo-
nium and nitrite concentrations stayed approximately at the detection limit (,5 mM for
ammonium and ,1 mM for nitrite) for the remainder of the experiment, while nitrate
increased to 500 mM, indicating that ammonium was converted to nitrate in both chemo-
stats (Fig. 4A and B; Fig. S2). No differences between the ammonium concentrations in the
chemostats could be detected because the ammonium concentration was below or
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FIG 3 Ammonium consumption of AOA-AC1 and AOB-G5-7 in mineral salts medium and spent
medium from AOA-AC1 and AOB-G5-7 (means 6 SD [n = 3]).
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FIG 4 Ammonium and nitrate concentrations (A and B) and gene abundances (AOA-AC1 amoA, AOB-
G5-7 amoA, and total bacteria) (C and D) in the chemostats during the competition experiment
between AOA-AC1 and AOB-G5-7. Chemostat L was inoculated with AOB-G5-7, and chemostat R was
inoculated with AOA-AC1. At day 0, the cultures were mixed.
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around the detection limit of the method used. When the ammonium, nitrite, and nitrate
concentrations in the chemostats were constant for 2 to 3 volume changes, the cultures
were mixed (time point, 0 days). The concentrations of ammonium, nitrite, and nitrate
were stable after mixing, indicating that ammonia and nitrite oxidation went on without
disturbance. Molecular methods were used to determine the abundances of AOA-AC1 and
AOB-G5-7 in the chemostats. In chemostat L (inoculated with AOB-G5-7), approximately
107 bacterial amoA copies/ml culture were detected (Fig. 4C), which would correspond to
3 � 106 AOB cells/ml culture because Nitrosomonas sp. Is79, the AOB in the enrichment
culture AOB-G5-7, has 3 copies of the amoA gene in the genome (39). The abundance of
AOA-AC1 was above 108 amoA copies/ml culture (Fig. 4D), corresponding to the same
number for AOA in the cultures because all sequenced AOA have only 1 copy of the amoA
gene in their genome (7, 35, 40).

The cultures were mixed based on volume at 1:2 and 2:1 ratios. After mixing, we
detected around 10 to 100 times more AOA than AOB amoA copies. Over the course of
2 to 3 volume changes (up to 20 days), the abundance of AOB-G5-7 decreased to ,105

copies/ml culture (Fig. 4C and D). Twenty days after mixing, AOB-G5-7 was not detecta-
ble anymore in the mixed cultures. The washout rate of the AOB was calculated (41)
(Fig. S3). The theoretical washout rate of the AOB was comparable to the decrease of
the measured abundance of the AOB in the chemostats, indicating that the AOB were
not actively growing during the competition experiment. The abundance of AOA-AC1
stayed constant for most of the experiment, at approximately 108 amoA copies/ml cul-
ture (Fig. 4C and D).

Both cultures contained nitrite-oxidizing bacteria. Based on the amplicon sequenc-
ing data, the NOB in AOA-AC1 belonged to the genus Nitrospira, and the NOB from
AOB-G5-7 belonged to the genus Nitrobacter. After mixing, Nitrospira sp. became the
dominant NOB in both chemostats, while the relative abundance of Nitrobacter
decreased, indicating that Nitrobacter was washed out (Fig. S4C and D).

The heterotrophic community was analyzed using weighted UniFrac after removing
all operational taxonomic units (OTUs) assigned to ammonia and nitrite oxidizers.
Principal-coordinate analysis (PCoA) showed that the heterotrophic community in the
mixed cultures was more closely related to the heterotrophic community in AOA-AC1
than to the heterotrophic community in AOB-G5-7 (Fig. S5).

Competition for ammonium between AOA-AC1 and AOB-G5-7 under various,
non-ammonium-limiting conditions in batch cultures. Batch competition experi-
ments were conducted with AOA-AC1 and AOB-G5-7 in media with different initial am-
monium concentrations of between 50 and 500 mM (Fig. 5; Fig. S6). AOA-AC1 and the
mixed cultures used the ammonium faster than AOB-G5-7 when incubated in the pres-
ence of 50 mM ammonium (Fig. S6). Conversely, AOB-G5-7 and the mixed cultures with

100

1000

10000

1e+05

1e+06

1e+07

1e+08

AOA AOAB AOBA AOB

50µMAOA
AOB

AOA AOAB AOBA AOB

500µM
am

oA
 a

bu
nd

an
ce

 [c
op

ie
s/

m
l]

FIG 5 amoA gene abundances in the batch culture competition experiments at initial ammonium
concentrations of 50 mM and 500 mM. The batch cultures were inoculated with cultures of AOA-AC1
and AOB-G5-7 mixed at 9:1 (vol/vol) (AOAB) and 1:9 (vol/vol) (AOBA) ratios and with AOA-AC1 (AOA)
and AOB-G5-7 (AOB) alone as controls (means 6 SD [n = 3] for AOAB and AOBA; means [n = 2] for
AOA and AOB). The cultures were transferred twice to fresh medium (2 ml of culture into 48 ml of
fresh medium) when the ammonium was used up. The amoA gene abundance was determined at
the end of the third growth cycle.
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a higher proportion of AOB-G5-7 consumed ammonium faster than AOA-AC1 when
cultures were incubated with an initial ammonium concentration of 500mM (Fig. S6).

We determined the abundances of AOA-AC1 and AOB-G5-7 at the end of the
experiment. The abundance of AOA-AC1 in the mixed cultures at 50 mM ammonium
was at the same level as that in the AOA control (AOA-AC1 alone), while the abun-
dance of AOB-G5-7 decreased in the mixed cultures compared to the AOB control
(AOB-G5-7 alone) (Fig. 5). At 500 mM ammonium, the opposite effect was observed:
the abundance of AOA-AC1 was lower in the mixed cultures than in the AOA control,
and the abundance of AOB-G5-7 was at the same level as that in the AOB control, indi-
cating that AOB-G5-7 became dominant (Fig. 5). The results indicate that AOA-AC1
became dominant in the mixed cultures at 50 mM ammonium and that AOB-G5-7
became dominant at 500mM ammonium.

The nitrite oxidizer Nitrospira sp. became dominant at 50 mM ammonium together
with the archaeal ammonia oxidizer (Fig. S7). At 500 mM ammonium, Nitrobacter sp.
originating from the AOB enrichment culture became dominant at an AOA/AOB mixing
ratio of 1:9. At an AOA/AOB mixing ratio of 9:1, Nitrospira sp. from the AOA enrichment
culture was the dominant nitrite oxidizer.

The heterotrophic communities in the batch competition treatments represented a
mixture of the heterotrophic communities of the AOA and AOB control cultures (Fig. S5).

DISCUSSION
Competition between AOA-AC1 and AOB-G5-7. AOA-AC1 outcompeted AOB-G5-

7 under ammonium-limiting conditions in chemostats and at 50 mM ammonium in
batch cultures (Fig. 4 and 5). However, AOB-G5-7 outcompeted AOA-AC1 at 500 mM
ammonium and grew faster in batch cultures with ammonium concentrations of
between 50 and 1,000 mM (Fig. 2 and 5).

The observation that AOA-AC1 outcompeted AOB-G5-7 under ammonium-limiting
and low-ammonium conditions further confirmed the ability of AOA to grow and per-
sist under conditions of substrate limitation better than AOB, while the higher growth
rates of AOB-G5-7 in batch cultures point to a competitive advantage of the AOB over
the AOA under conditions with higher ammonium availability. This observation is well
supported by studies using cultivation and molecular approaches. Nitrosopumilus mari-
timus and several AOA enrichment cultures have very high affinities for ammonium,
with Km values ranging from 0.003 mM to 4.4 mM ammonia (0.1 to 40 mM NH3 plus
NH4

1) (5, 6, 22, 23, 36, 42). AOA also dominate many aquatic environments with very
low ammonium availability, such as the open ocean, oligotrophic lakes, and drinking
water treatment plants (16, 43–49). AOB, on the other hand, have a lower affinity for
ammonium, with Km values of 3 mM (;150mM NH3 plus NH4

1) in Nitrosomonas sp. Is79
and N. briensis and up to 60 mM (;3 mM NH3 plus NH4

1) in N. eutropha (24–26).
Additionally, they are found in high abundances in more eutrophic aquatic environ-
ments such as Lake Erie and Lake Taihu and in agricultural/fertilized soils, indicating
their adaptation to higher ammonium availabilities than AOA (16, 50–54). These results
indicate that AOA-AC1 is the better competitor for low-concentration ammonium than
AOB-G5-7 and therefore will likely perform better in more oligotrophic environments.

One of the most successful ways of separating freshwater AOA from AOB after ini-
tial enrichment is sequential filtration through 0.45-mm filters, indicating that the
enriched AOA are much smaller than the AOB (34, 55, 56). The theoretical volume of
AOB ranges between 0.5 and 3.3 mm3, and the surface area ranges between 3.5 and 12
mm2, while both parameters are more variable in AOA (see Table S4 in the supplemen-
tal material). Comparison of the volumes and surface areas of Nitrosomonas oligotropha
(as a representative of Nitrosomonas sp. Is79 in AOB-G5-7) and “Ca. Nitrosotenuis uzo-
nensis” (as a representative of the AOA in AOA-AC1) (Table S4) shows that the AOB
have a 50-times-larger volume and a 10-times-larger surface area than the AOA. The
abundance of AOA-AC1 in the chemostats and batch cultures was approximately 100
times higher than the abundance of AOB-G5-7, while both cultures grew under the
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same conditions and on the same amount of ammonium as the energy source.
Combining our results on abundance of AOA and AOB with the theoretical size of the
cells (Table S4) indicates that cell size has an important impact on the ammonia-oxidiz-
ing activity in general. A more in-depth study was just published in the ISME Journal
(57). Smaller cells must be present in higher abundances than larger cells to oxidize
the same amount of ammonium. If we apply this observation with the same assump-
tions to environmental samples, this would indicate that freshwater AOA from the
Nitrosopumilus and Nitrosotenuis groups and AOB from the Nitrosomonas oligotropha
group would contribute equally to ammonia oxidation in an environment only if the
AOA abundance is 10 to 100 times higher than the AOB abundance. If the abundances
of these AOA and AOB are of the same order of magnitude, it would be very likely that
AOB are responsible for the majority of the ammonia oxidation. Therefore, it would be
important to consider the cell sizes of the dominant AOA and AOB when determining
which ammonia oxidizers are most likely the metabolically dominant microorganisms
in an environment. This observation has an important impact on the interpretation of
data presenting the abundances of AOA and AOB in the environment since many stud-
ies conduct direct comparisons between the abundances of AOA and AOB to evaluate
their contributions to ammonia oxidation (58–61) and even use the ratio between AOA
and AOB as a measure of the trophic status of an environment (62).

Ecological implications. From an ecological perspective, AOA and AOB might rep-
resent K- and r-strategists (63) or, as more directly described for microbes, oligotrophs
and copiotrophs (64). Among other characteristics, oligo- and copiotrophs differ in
their maximum growth rate, affinity for the substrate, responsiveness to substrate addi-
tion (starvation response), and ease of cultivation (64). Differences in all these charac-
teristics were determined for AOA-AC1 and AOB-G5-7 as well as AOA and AOB in gen-
eral. AOB-G5-7 grows faster than AOA-AC1 and other freshwater AOA (Fig. 2) (22, 34),
AOA have higher affinities for ammonium than AOB (6, 22, 23, 36, 42, 65), AOA-AC1
responds more slowly after starvation than AOB-G5-7 does (66), and AOA are more
challenging to cultivate than AOB (55). Based on these observations, AOA can be
described as oligotrophs and AOB can be described as copiotrophs in this experimen-
tal setup.

Conclusions. Environmentally relevant factors such as ammonium concentrations
determined the ability of AOA-AC1 or AOB-G5-7 (chemostat versus batch culture) to
grow faster and therefore outcompete the other. These results reflect the distribution
of AOA and AOB in freshwater systems, with AOA being more abundant in more oligo-
trophic–nutrient-poor systems (low ammonium) and AOB being more abundant in
more meso/eutrophic–nutrient-rich systems (high ammonium). The number of AOA-
AC1 cells was 10 to 100 times higher than the number of AOB-G5-7 cells when grown
under autotrophic conditions on the same amount of ammonium (Fig. 4 and 5). Based
on this observation, one could conclude that these AOA and AOB contribute equally to
ammonia oxidation in the freshwater environment, where the abundance of AOA is
found to be 10 to 100 times higher than the abundance of AOB.

MATERIALS ANDMETHODS
Medium. Mineral salts medium used in all experiments contained 10 mM NaCl, 1 mM KCl, 1 mM

CaCl2�2H2O, 0.2 mM MgSO4�7H2O, and 1 ml liter21 trace elements solution (55). For batch culture experi-
ments, HEPES buffer was added in a 4:1 molar ratio to the ammonium concentration, and the pH was
adjusted with 1 M NaOH to 7.5 before autoclaving. After autoclaving, a sterile KH2PO4 solution was
added to obtain a final concentration of 0.4 mM (55). For the continuous cultures, unbuffered mineral
salts medium was prepared and autoclaved in the chemostats. The sterile KH2PO4 solution was added af-
ter autoclaving, and the pH was adjusted to 7.5 with a 2% (wt/vol) Na2CO3 solution.

Enrichment of AOA-AC1. Sediment samples were taken near the shoreline of Lake Acton (39°579N,
84°749W) in the fall of 2008 and inoculated into fresh mineral salts medium containing 250 mM ammo-
nium. The AOA culture was further enriched in mineral salts medium with 250 mM ammonium as previ-
ously described (34, 55). During enrichment, the cultures were passed through 0.45-mm filters for the
first six transfers to exclude AOB. The phylogenetic affiliation of the AOA was determined as described
previously (34).

AOB-G5-7. We used the previously described AOB freshwater enrichment culture G5-7 (AOB-G5-7)
as a representative AOB culture. AOB-G5-7, a well-characterized AOB enrichment culture that was
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obtained from freshwater sediment in the Netherlands, contains the AOB Nitrosomonas sp. Is79 and is
adapted to low ammonium concentrations (26, 33, 39, 67).

Batch growth experiments. All batch growth experiments were conducted in 125-ml Erlenmeyer
flasks with a 50-ml culture in mineral salts medium and cotton plugs to allow for gas exchange. The cul-
tures were incubated at 27°C in the dark. Samples for nitrite/nitrate analysis were taken daily.

Batch culture growth experiment at different ammonium concentrations. The growth experi-
ments were conducted in mineral salts medium with different ammonium concentrations (34, 55). The growth
rates were calculated from the linear increase of the log-transformed nitrite/nitrate concentrations over time,
assuming that the production in the cultures is correlated with the growth of AOA and AOB (5, 34, 55, 68).

Spent medium growth experiments. AOA-AC1 and AOB-G5-7 were grown in 500-ml mineral salts
medium in a 1-liter Erlenmeyer flask with 500 mM ammonium. Once the ammonium was consumed, the
cultures were spun down (20 min at 22,000 � g), and the supernatant was sterile filtered through 0.1-mm
filters. Ammonium was added to the spent medium to reach a final ammonium concentration of 500 mM,
and the pH was readjusted to 7.5. Spent media of AOA-AC1 and AOB-G5-7 (45 ml) were inoculated with
late-logarithmic-phase cultures of AOA-AC1 and AOB-G5-7 (5 ml), respectively. In addition, AOA-AC1 and
AOB-G5-7 were inoculated into mineral salts medium with ammonium as controls. The cultures were incu-
bated at 27°C in the dark, and samples for ammonium, nitrite, and nitrate analyses were taken daily.

Continuous-culture competition experiment. Two chemostats with a vessel volume of 5 liters
were assembled, filled with 2 liters of unbuffered mineral salts medium with 500 mM ammonium, and
autoclaved. The temperature was then adjusted to 27°C, stirring was set to 50 rpm, bubbling with sterile
filtered air was set to a rate of 500 ml min21, a sterile KH2PO4 solution was added to a final concentration
of 0.4 mM, and the pH value was adjusted to 7.5 using a 2% (wt/vol) Na2CO3 solution. The chemostats
were inoculated with 1 liter of late-logarithmic-phase cultures of AOA-AC1 or AOB-G5-7 as determined
by the consumption of ammonium. When the cultures started to consume ammonium and produce ni-
trite/nitrate, the stirrer speed was increased stepwise from 50 rpm to 300 rpm and stayed at 300 rpm for
the remainder of the experiment. When the cultures had consumed around 80% of the initial ammo-
nium concentration, unbuffered mineral salts medium with 500 mM ammonium was added to each che-
mostat with a dilution rate of 535 ml day21, equal to 1 volume change in 5.6 days and a growth rate of
0.0074 h21. After the cultures reached steady state, the competition experiment was started by mixing
the cultures. One liter of each culture was removed from the original vessel and transferred to the other,
to create 1:2 and 2:1 (vol/vol) mixtures of the cultures. The cultures were mixed in different ratios to
ensure that the initial mixing ratio did not affect the outcome of the competition experiment. Samples
were taken daily throughout the course of the experiment (around 2 months) to determine the ammo-
nium, nitrite, and nitrate concentrations. The samples were filtered (0.22-mm polycarbonate filters) and
stored at 220°C until analysis. After every volume change and before and after mixing the cultures, two
50-ml samples from each chemostat were taken and filtered on 0.1-mm polycarbonate membranes,
which were stored at280°C for molecular analysis.

Batch culture competition experiment. AOA-AC1 and AOB-G5-7 were grown in mineral salts me-
dium with 500 mM ammonium to the late logarithmic phase as determined by the consumption of am-
monium. These cultures were mixed in volumetric ratios of 1:9 and 9:1. The mixed cultures as well as
both single cultures (2 ml) were used to inoculate mineral salts medium (48 ml) with 50 mM and 500 mM
ammonium. The cultures were incubated in the dark at 27°C, and the ammonium concentration was
determined every second day. When the ammonium was consumed, the cultures were transferred to
fresh medium with the same ammonium concentration (2 ml into 48 ml). At the end of the third growth
cycle, the cultures were filtered onto 0.1-mm polycarbonate membranes, and the filters were stored at
280°C for molecular analysis.

Chemical analysis. Ammonium, nitrite, and nitrate concentrations were determined using colori-
metric methods (55, 69–71).

Molecular analysis. (i) DNA isolation (competition experiment). DNA was isolated from filters
using the Fast DNA spin kit for soil (MP Biomedicals, Solon, OH, USA).

(ii) Quantitative PCR (qPCR). The copy numbers of the 16S rRNA and amoA genes (DNA) were
quantified using the Bioline SensiFAST SYBR NoROX kit (Bioline USA, Taunton, MA, USA) in 5-ml reaction
mixtures with 0.5- or 1-ml samples in an Illumina Eco real-time PCR system (Illumina, San Diego, CA, USA)
with the primers and conditions presented in Table 1 and Table S1 in the supplemental material.
Standard curves were constructed using plasmids containing the gene sequence of interest. The effi-
ciency of the reactions ranged from 87% to 118%, and the R2 value in all experiments was.0.99.

TABLE 1 Primers used for quantification of amoA genes in the DNA samples from the
competition experiment

Target (reference) Primer name, sequence
AOA amoA (73) Arch amoA F, 59-STA ATG GTC TGG CTT AGA CG-39

Arch amoA R, 59-GCG GCC ATC CAT CTG TAT GT-39

AOB amoA (74) amoA-1F, 59-GGG GTT TCT ACT GGT GGT-39
amoA-2R KS, 59-CCC CTC KGS AAA GCC TTC TTC-39

Eubacteria (75) 357F, 59-CCT ACG GGA GGC AGC AG-39
518R, 59-ATT ACC GCG GCT GCT GG-39
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(iii) 16S rRNA gene amplicon sequencing. DNA from selected samples from the chemostats and
batch cultures was amplified in triplicate with Illumina-compatible barcoded primers designed for the
V4 region of the 16S rRNA gene (515F-806R) (76, 77). The PCR products were mixed in equal ratios and
sequenced on the Illumina MiSeq system at the Center for Bioinformatics and Functional Genomics
(CBFG) at Miami University. The sequences were processed by the software package MiSeq Reporter into
files containing the sequences and quality information and a file containing the barcodes assigned to
each sequence. The software package QIIME 2 was used for quality control and analysis of the sequences
(see the supplemental material) (72).

Data availability. The amoA sequence of the AOA enrichment culture AOA-AC1 was deposited in
GenBank under the accession number JN232391. The sequences of the microbial communities were de-
posited in the NCBI SRA database under the accession number PRJNA259942.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.9 MB.
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